Evidence for Nr4a1 as a cold-induced effector of brown fat thermogenesis.
نویسندگان
چکیده
Acute cold exposure leads to norepinephrine release in brown adipose tissue (BAT) and activates uncoupling protein (UCP)1-mediated nonshivering thermogenesis. Chronic sympathetic stimulation is known to initiate mitochondrial biogenesis, UCP1 expression, hyperplasia of BAT, and recruitment of brown adipocytes in white adipose tissue (WAT) depots. Despite distinct functions of BAT and WAT in energy balance, only a few genes are exclusively expressed in either tissue. We identified NUR77 (Nr4a1), an orphan receptor, to be induced transiently in brown adipocytes in response to beta-adrenergic stimulation and in BAT of cold-exposed mice. Subsequent reporter gene assays demonstrated an inhibitory action of NUR77 on basal and peroxisome proliferator-activated receptor (PPAR)gamma/retinoid X receptor (RXR)alpha-mediated transactivation of the Ucp1 enhancer in heterologous cotransfection experiments. Despite this function of NUR77 in the control of Ucp1 gene expression, nonshivering thermogenesis was not affected in Nur77 knockout mice. However, we observed a superinduction of Nor1 in BAT of cold-exposed knockout mice. We conclude that NUR77 is a cold-induced negative regulator of Ucp1, but phenotypic consequences in knockout mice are compensated by functional redundancy of Nor1.
منابع مشابه
Cold-induced thermoregulation and biological aging.
Aging is associated with diminished cold-induced thermoregulation (CIT). The mechanisms accounting for this phenomenon have yet to be clearly elucidated but most likely reflect a combination of increased heat loss and decreased metabolic heat production. The inability of the aged subject to reduce heat loss during cold exposure is associated with diminished reactive tone of the cutaneous vascul...
متن کاملBrown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans.
Brown adipose tissue (BAT) is vital for proper thermogenesis during cold exposure in rodents, but until recently its presence in adult humans and its contribution to human metabolism were thought to be minimal or insignificant. Recent studies using PET with 18F-fluorodeoxyglucose (18FDG) have shown the presence of BAT in adult humans. However, whether BAT contributes to cold-induced nonshiverin...
متن کاملBrown fat is essential for cold-induced thermogenesis but not for obesity resistance in aP2-Ucp mice.
The role of brown adipose tissue in total energy balance and cold-induced thermogenesis was studied. Mice expressing mitochondrial uncoupling protein 1 (UCP-1) from the fat-specific aP2 gene promoter (heterozygous and homozygous aP2-Ucp transgenic mice) and their nontransgenic C57BL6/J littermates were used. The transgenic animals are resistant to obesity induced by a high-fat diet, presumably ...
متن کاملStimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis.
In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resul...
متن کاملThe molecular and biochemical basis of nonshivering thermogenesis in an African endemic mammal, Elephantulus myurus.
Uncoupling protein 1 (UCP1) mediated nonshivering thermogenesis (NST) in brown adipose tissue (BAT) is an important avenue of thermoregulatory heat production in many mammalian species. Until recently, UCP1 was thought to occur exclusively in eutherians. In the light of the recent finding that UCP1 is already present in fish, it is of interest to investigate when UCP1 gained a thermogenic funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2005